56 research outputs found

    Path Puzzles: Discrete Tomography with a Path Constraint is Hard

    Full text link
    We prove that path puzzles with complete row and column information--or equivalently, 2D orthogonal discrete tomography with Hamiltonicity constraint--are strongly NP-complete, ASP-complete, and #P-complete. Along the way, we newly establish ASP-completeness and #P-completeness for 3-Dimensional Matching and Numerical 3-Dimensional Matching.Comment: 16 pages, 8 figures. Revised proof of Theorem 2.4. 2-page abstract appeared in Abstracts from the 20th Japan Conference on Discrete and Computational Geometry, Graphs, and Games (JCDCGGG 2017

    Finding Closed Quasigeodesics on Convex Polyhedra

    Get PDF
    A closed quasigeodesic is a closed loop on the surface of a polyhedron with at most 180∘180^\circ of surface on both sides at all points; such loops can be locally unfolded straight. In 1949, Pogorelov proved that every convex polyhedron has at least three (non-self-intersecting) closed quasigeodesics, but the proof relies on a nonconstructive topological argument. We present the first finite algorithm to find a closed quasigeodesic on a given convex polyhedron, which is the first positive progress on a 1990 open problem by O'Rourke and Wyman. The algorithm's running time is pseudopolynomial, namely O(n2ε2Lℓb)O\left({n^2 \over \varepsilon^2} {L \over \ell} b\right) time, where ε\varepsilon is the minimum curvature of a vertex, LL is the length of the longest edge, ℓ\ell is the smallest distance within a face between a vertex and a nonincident edge (minimum feature size of any face), and bb is the maximum number of bits of an integer in a constant-size radical expression of a real number representing the polyhedron. We take special care with the model of computation, introducing the O(1)O(1)-expression RAM and showing that it can be implemented in the standard word RAM.Comment: 18 pages, 11 figures. Revised version of paper from SoCG 202

    Conflict-Free Coloring of Planar Graphs

    Get PDF
    A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and v's neighbors. Such colorings have applications in wireless networking, robotics, and geometry, and are well-studied in graph theory. Here we study the natural problem of the conflict-free chromatic number chi_CF(G) (the smallest k for which conflict-free k-colorings exist). We provide results both for closed neighborhoods N[v], for which a vertex v is a member of its neighborhood, and for open neighborhoods N(v), for which vertex v is not a member of its neighborhood. For closed neighborhoods, we prove the conflict-free variant of the famous Hadwiger Conjecture: If an arbitrary graph G does not contain K_{k+1} as a minor, then chi_CF(G) <= k. For planar graphs, we obtain a tight worst-case bound: three colors are sometimes necessary and always sufficient. We also give a complete characterization of the computational complexity of conflict-free coloring. Deciding whether chi_CF(G)<= 1 is NP-complete for planar graphs G, but polynomial for outerplanar graphs. Furthermore, deciding whether chi_CF(G)<= 2 is NP-complete for planar graphs G, but always true for outerplanar graphs. For the bicriteria problem of minimizing the number of colored vertices subject to a given bound k on the number of colors, we give a full algorithmic characterization in terms of complexity and approximation for outerplanar and planar graphs. For open neighborhoods, we show that every planar bipartite graph has a conflict-free coloring with at most four colors; on the other hand, we prove that for k in {1,2,3}, it is NP-complete to decide whether a planar bipartite graph has a conflict-free k-coloring. Moreover, we establish that any general} planar graph has a conflict-free coloring with at most eight colors.Comment: 30 pages, 17 figures; full version (to appear in SIAM Journal on Discrete Mathematics) of extended abstract that appears in Proceeedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pp. 1951-196

    Who witnesses The Witness? Finding witnesses in The Witness is hard and sometimes impossible

    Full text link
    We analyze the computational complexity of the many types of pencil-and-paper-style puzzles featured in the 2016 puzzle video game The Witness. In all puzzles, the goal is to draw a simple path in a rectangular grid graph from a start vertex to a destination vertex. The different puzzle types place different constraints on the path: preventing some edges from being visited (broken edges); forcing some edges or vertices to be visited (hexagons); forcing some cells to have certain numbers of incident path edges (triangles); or forcing the regions formed by the path to be partially monochromatic (squares), have exactly two special cells (stars), or be singly covered by given shapes (polyominoes) and/or negatively counting shapes (antipolyominoes). We show that any one of these clue types (except the first) is enough to make path finding NP-complete ("witnesses exist but are hard to find"), even for rectangular boards. Furthermore, we show that a final clue type (antibody), which necessarily "cancels" the effect of another clue in the same region, makes path finding Σ2\Sigma_2-complete ("witnesses do not exist"), even with a single antibody (combined with many anti/polyominoes), and the problem gets no harder with many antibodies. On the positive side, we give a polynomial-time algorithm for monomino clues, by reducing to hexagon clues on the boundary of the puzzle, even in the presence of broken edges, and solving "subset Hamiltonian path" for terminals on the boundary of an embedded planar graph in polynomial time.Comment: 72 pages, 59 figures. Revised proof of Lemma 3.5. A short version of this paper appeared at the 9th International Conference on Fun with Algorithms (FUN 2018

    Folding Polyominoes into (Poly)Cubes

    Full text link
    We study the problem of folding a polyomino PP into a polycube QQ, allowing faces of QQ to be covered multiple times. First, we define a variety of folding models according to whether the folds (a) must be along grid lines of PP or can divide squares in half (diagonally and/or orthogonally), (b) must be mountain or can be both mountain and valley, (c) can remain flat (forming an angle of 180∘180^\circ), and (d) must lie on just the polycube surface or can have interior faces as well. Second, we give all the inclusion relations among all models that fold on the grid lines of PP. Third, we characterize all polyominoes that can fold into a unit cube, in some models. Fourth, we give a linear-time dynamic programming algorithm to fold a tree-shaped polyomino into a constant-size polycube, in some models. Finally, we consider the triangular version of the problem, characterizing which polyiamonds fold into a regular tetrahedron.Comment: 30 pages, 19 figures, full version of extended abstract that appeared in CCCG 2015. (Change over previous version: Fixed a missing reference.

    Folding a Paper Strip to Minimize Thickness

    Get PDF
    In this paper, we study how to fold a specified origami crease pattern in order to minimize the impact of paper thickness. Specifically, origami designs are often expressed by a mountain-valley pattern (plane graph of creases with relative fold orientations), but in general this specification is consistent with exponentially many possible folded states. We analyze the complexity of finding the best consistent folded state according to two metrics: minimizing the total number of layers in the folded state (so that a "flat folding" is indeed close to flat), and minimizing the total amount of paper required to execute the folding (where "thicker" creases consume more paper). We prove both problems strongly NP-complete even for 1D folding. On the other hand, we prove the first problem fixed-parameter tractable in 1D with respect to the number of layers.Comment: 9 pages, 7 figure
    • …
    corecore